martes, 25 de octubre de 2011

METROLOGIA

La metrología (del griego μετρoν, medida y λoγoς, tratado) es la ciencia e ingeniería de la medida, incluyendo el estudio, mantenimiento y aplicación del sistema de pesas y medidas. Actúa tanto en los ámbitos científico, industrial y legal, como en cualquier otro demandado por la sociedad. Su objetivo fundamental es la obtención y expresión del valor de las magnitudes, garantizando la trazabilidad de los procesos y la consecución de la exactitud requerida en cada caso; empleando para ello instrumentos métodos y medios apropiados.
La Metrología tiene dos características muy importantes el resultado de la medición y la incertidumbre de medida.
Los físicos y las industrias utilizan una gran variedad de instrumentos para llevar a cabo sus mediciones. Desde objetos sencillos como reglas y cronómetros, hasta potentes microscopios, medidores de láser e incluso avanzadas computadoras muy precisas.
Por otra parte, la Metrología es parte fundamental de lo que en los países industrializados se conoce como Infraestructura Nacional de la Calidad,[1] compuesta además por las actividades de: normalización, ensayos, certificación y acreditación, que a su vez son dependientes de las actividades metrológicas que aseguran la exactitud de las mediciones que se efectúan en los ensayos, cuyos resultados son la evidencia para las certificaciones. La metrología permite asegurar la comparabilidad internacional de las mediciones y por tanto la intercambiabilidad de los productos a escala internacional.
En el ámbito metrológico los términos tienen significados específicos y éstos están contenidos en el Vocabulario Internacional de Metrología o VIM.[2]
Dentro de la metrología existen diversas áreas. Por ejemplo, la "metrología eléctrica" estudia las medidas eléctricas: tensión (o voltaje), intensidad de corriente (o amperaje), resistencia, impedancia, reactancia, etc. La metrología eléctrica está constituida por tres divisiones: tiempo y frecuencia, mediciones electromagnéticas y termometría.
A continuación se expone un muestrario de los instrumentos de medición más utilizados en las industrias metalúrgicas de fabricación de componentes, equipos y maquinaria.

En la siguiente lista se muestran algunos instrumentos de medición e inspección:
Calibre pie de rey.
  • Pie de rey o calibrador vernier universal: para medir con precisión elementos pequeños (tornillos, orificios, pequeños objetos, etc.). La precisión de esta herramienta llega a la décima, a la media décima de milímetro e incluso llega a apreciar centésimas de dos en dos (cuando el nonio está dividido en cincuenta partes iguales). Para medir exteriores se utilizan las dos patas largas, para medir interiores (p.e. diámetros de orificios) las dos patas pequeñas, y para medir profundidades un vástago que va saliendo por la parte trasera, llamado sonda de profundidad. Para efectuar una medición, ajustaremos el calibre al objeto a medir y lo fijaremos. La pata móvil tiene una escala graduada (10, 20 o 50 divisiones, dependiendo de la precisión).
La medición con este aparato se hará de la siguiente manera: Primero se deslizará la parte móvil de forma que el objeto a medir quede entre las dos patillas si es una medida de exteriores. La patilla móvil indicará los milímetros enteros que contiene la medición. Los decimales deberán averiguarse con la ayuda del nonio. Para ello observaremos qué división del nonio coincide con una división (cualquiera) de las presentes en la regla fija. Esa división de la regla móvil coincidirá con los valores decimales de nuestra medición.
  • Pie de rey de Tornero: muy parecido al anteriormente descrito, pero con las uñas adaptadas a las mediciones de piezas en un torno. Este tipo de calibres no dispone de patillas de interiores pues con las de exteriores pueden realizarse medidas de interiores, pero deberá tenerse en cuenta que el valor del diámetro interno deberá incrementarse en 10 mm debido al espesor de las patillas del instrumento (5 mm de cada una).
  • Calibre de profundidad: es un instrumento de medición parecido a los anteriores, pero tiene unos apoyos que permiten la medición de profundidades, entalladuras y agujeros. Tienen distintas longitudes de bases y además son intercambiables.
  • Banco de una coordenada horizontal: equipo de medición para la calibración de los instrumentos de medida. Provisto de una regla de gran precisión permite comprobar los errores de los útiles de medida y control, tales como pies de rey, micrómetros, comparadores, anillos lisos y de rosca, tampones, quijadas, etc.
Micrómetro de exteriores.
Reloj comparador.
  • Micrómetro, perno micrométrico o Palmer: es un instrumento que sirve para medir con alta precisión (del orden de una micra, equivalente a 10 − 6 metros) las dimensiones de un objeto. Para ello cuenta con 2 puntas que se aproximan entre sí mediante un tornillo de rosca fina, el cual tiene grabado es su contorno una escala. La escala puede incluir un nonio. Frecuentemente el micrómetro también incluye una manera de limitar la torsión máxima del tornillo, dado que la rosca muy fina hace difícil notar fuerzas capaces de causar deterioro de la precisión del instrumento. El Micrómetro se clasifica de la siguiente manera:
    • Micrómetro de exteriores: son instrumentos de medida capaces de medir el exterior de piezas en centésimas. Poseen contactos de metal duro rectificados y lapeados. Ejercen sobre la pieza a medir una presión media entre 5 y 10 N, poseen un freno para no dañar la pieza y el medidor si apretamos demasiado al medir.
    • Micrómetro digital: son exactamente iguales a los anteriores, pero tienen la particularidad de realizar mediciones de hasta 1 milésima de precisión y son digitales, a diferencia de los anteriores que son analógicos.
    • Micrómetro exterior con contacto de platillos: de igual aspecto que los anteriores, pero posee unos platillos en sus contactos para mejor agarre y para la medición de dientes de coronas u hojas de sierra circulares.
    • Micrómetro de exteriores de arco profundo: tiene la particularidad de que tiene su arco de mayor longitud que los anteriores, para poder realizar mediciones en placas o sitios de difícil acceso.
    • Micrómetro de profundidades: se parece mucho al calibre de profundidades, pero tiene la capacidad de realizar mediciones en centésimas de milímetro.
    • Micrómetro de interiores: mide interiores basándose en tres puntos de apoyo. En el estuche se contienen galgas para comprobar la exactitud de las mediciones.
  • Reloj comparador: es un instrumento que permite realizar comparaciones de medición entre dos objetos. También tiene aplicaciones de alineación de objetos en maquinarias. Necesita de un soporte con pie magnético.
  • Visualizadores con entrada Digimatic: es un instrumento que tiene la capacidad de mostrar digitalmente la medición de un instrumento analógico.
  • Verificador de interiores: instrumento que sirve para tomar medidas de agujeros y compararlas de una pieza a otra. Posee un reloj comparador para mayor precisión y piezas intercambiables.
Gramil normal y gramil digital.
  • Gramil o calibre de altitud: es un instrumento capaz de realizar mediciones en altura verticalmente, y realizar señalizaciones y paralelas en piezas.
  • Goniómetro universal: es un instrumento que mide el ángulo formado por dos visuales, cifrando el resultado. Dicho ángulo podrá estar situado en un plano horizontal y se denominará “ángulo azimutal”; o en un plano vertical, denominándose “ángulo cenital” si el lado origen de graduación es la línea cenit-nadir del punto de estación; o “ángulo de altura” si dicho lado es la línea horizontal del plano vertical indicado que pasa por el punto de vista o de puntería.
  • Nivel de agua: es un instrumento de medición utilizado para determinar la horizontalidad o verticalidad de un elemento. Es un instrumento muy útil para la construcción en general y para la industria. El principio de este instrumento está en un pequeño tubo transparente (cristal o plástico) el cual está lleno de líquido con una burbuja en su interior. La burbuja es de tamaño inferior a la distancias entre las 2 marcas. Si la burbuja se encuentra entre las dos marcas, el instrumento indica un nivel exacto, que puede ser horizontal o vertical.
  • Tacómetro: es un instrumento capaz de contar el número de revoluciones de un eje por unidad de tiempo.
  • Voltímetro: instrumento para medir la diferencia de potencial entre dos puntos.
  • Amperímetro: instrumento para medir la intensidad de corriente que circula por una rama de un circuito eléctrico.
  • Polímetro: instrumento capaz de medir diferentes medidas eléctricas como la tensión, resistencia e intensidad de corriente normal que hay en un circuito, además de algunas funciones más que tenga el instrumento, dependiendo del fabricante.
  • Estroboscopio: es un elemento capaz de contar revoluciones y vibraciones de una maquinaria, sin tener contacto físico, a través del campo de acción que ésta genera.
  • Galgas para roscas y espesores: son reglas comparación para ver que el tipo de rosca de una tornillo o el espesor de un elemento. La galga de rosca puede ser de rosca Métrica o Whitworth.
  • Balanza: instrumento que es capaz de medir el peso de un determinado elemento. Las hay de distintos tamaños y de distintos rangos de apreciación de pesos.
Calibre tapón cilíndrico pasa-no pasa.
  • Calibre pasa-no pasa
    • Calibre tampón cilíndrico: son elementos que sirven para comprobar el diámetro de agujeros y comprobar que se adaptan a lo que necesitamos, para respetar las tolerancias de equipo, se someten a la condición de pasa-no pasa y tienen el uso contrario al calibre de herradura.
    • Calibre de herradura: sirve para medir el diámetro exterior de piezas con la condición de pasa-no pasa.
  • Calibre de rosca: permite medir la rosca tanto de un macho como de una hembra, sometidos a la condición de pasa/no pasa.
  • Instrumentos para inspección óptica
    • Lupa: es un instrumento de inspección que permite ver objetos y características que nos es imposible ver a simple vista. Consigue aumentar lo que estamos viendo, el aumento depende de la graduación óptica del instrumento.
    • Microscopio: instrumento de visualización que nos permite ver aspectos o características de objetos con una visión microscópica, y con los dos ojos simultáneamente.
    • Proyector de perfiles: instrumento que permite ampliar con un factor conocido, una pieza y poder observar su estructura más pequeña mediante la reflexión de su sombra.
  • Termómetro: instrumento que permite realizar mediciones de temperatura.
  • Rugosímetro: es un instrumento que mediante ondas es capaz de medir la rugosidad de la superficie de un objeto, sin necesidad de ampliación visual de la superficie del objeto.
  • Láser, como instrumento de medición
  • Durómetro: instrumento electrónico que permite medir y hacer pruebas de la dureza de distintos materiales, ya sean metálicos, cerámicos, plásticos o de piedra.

[editar] Calibrado de instrumentos de medida

El calibrado es el procedimiento de comparación entre lo que indica un instrumento y lo que "debiera indicar" de acuerdo a un patrón de referencia con valor conocido. De esta definición se deduce que para calibrar un instrumento o patrón es necesario disponer de uno de mayor precisión que proporcione el valor convencionalmente verdadero que es el que se empleará para compararlo con la indicación del instrumento sometido a calibrado. Esto se realiza mediante una cadena ininterrumpida y documentada de comparaciones hasta llegar al patrón primario, y que constituye lo que llamamos trazabilidad. El objetivo del calibrado es mantener y verificar el buen funcionamiento de los equipos, responder a los requisitos establecidos en las normas de calidad y garantizar la fiabilidad y trazabilidad de las medidas.
Durante el calibrado se contrastará el valor de salida del instrumento a calibrar frente a un patrón en diferentes puntos de calibración. Si el error de calibración —error puesto de manifiesto durante la calibración— es inferior al límite de rechazo, la calibración será aceptada. En caso contrario se requerirá ajuste del instrumento y una contrastación posterior, tantas veces como sea necesario hasta que se obtenga un error inferior al límite establecido. En equipos que no disponen de ajuste, como termopares etc. en caso de no satisfacer las tolerancias marcadas deberían ser sustituidos por otros previamente calibrados.
En la calibración, los resultados deben informarse a través de un certificado de calibración, en el cual se hará constar los errores encontrados así como las correcciones empleadas, errores máximos permitidos, además pueden incluir tablas, gráficos, etc.

[editar] Parámetros a considerar en toda calibración

  • ERROR DE MEDICIÓN: Resultado de una medición menos un valor verdadero del mensurando.
  • DESVIACIÓN: Valor medido menos su valor de referencia.
  • ERROR RELATIVO: Es la relación entre el error de medida y un valor verdadero del mensurando. — Valor del mensurando recogido en el patrón—. El error relativo se suele expresar también en forma porcentual: 100 %.
  • ERROR SISTEMÁTICO: Serían debidos a causas que podrían ser controladas o eliminadas —por ejemplo medidas realizadas con un aparato averiado o mal calibrado—.
  • CORRECCIÓN: Valor sumado algebraicamente al resultado sin corregir de una medición para compensar un error sistemático. De lo que se deduce que la corrección, o bien sea reflejada en la hoja de calibración o bien minimizada mediante el ajuste, solo aplica a las derivas de los instrumentos.
  • AJUSTE: Al proceso de corrección se le denomina AJUSTE y es la operación destinada a llevar a un instrumento de medida a un estado de funcionamiento conveniente para su utilización. El ajuste puede ser automático, semiautomático o manual.
  • PATRÓN PRIMARIO: Patrón que es designado o ampliamente reconocido como poseedor de las más altas cualidades metrológicas y cuyo valor se acepta sin referirse a otros patrones de la misma magnitud.
  • PATRÓN SECUNDARIO: Patrón cuyo valor se establece por comparación con un patrón primario de la misma magnitud.
  • PATRÓN DE REFERENCIA: Patrón, en general de la más alta calidad metrológica, disponible en un lugar dado o en una organización determinada, del cual se derivan las mediciones realizadas en dicho lugar.
  • PATRÓN DE TRABAJO: Patrón que se utiliza corrientemente para calibrar o controlar medidas materializadas, instrumentos de medida o materiales de referencia.
  • PATRÓN DE MEDIDA: Valor de medición materializado, aparato o sistema de medida con el que se intenta definir, realizar, conservar, o reproducir una unidad física o bien uno o varios valores conocidos de una magnitud con el fin de que sirvan de comparación a otros elementos de medida

LAS PALANCAS

La palanca es una máquina simple que tiene como función transmitir una fuerza y un desplazamiento. Está compuesta por una barra rígida que puede girar libremente alrededor de un punto de apoyo llamado fulcro.
Puede utilizarse para amplificar la fuerza mecánica que se aplica a un objeto, para incrementar su velocidad o la distancia recorrida, en respuesta a la aplicación de una fuerza

Tipos de palanca

Las palancas se dividen en tres géneros, también llamados órdenes o clases, dependiendo de la posición relativa de los puntos de aplicación de la potencia y de la resistencia con respecto al fulcro (punto de apoyo). El principio de la palanca es válido indistintamente del tipo que se trate, pero el efecto y la forma de uso de cada uno cambian considerablemente.

Palanca de primera clase

Palanca de primera clase.
En la palanca de primera clase, el fulcro se encuentra situado entre la potencia y la resistencia. Se caracteriza en que la potencia puede ser menor que la resistencia, aunque a costa de disminuir la velocidad transmitida y la distancia recorrida por la resistencia. Para que esto suceda, el brazo de potencia Bp ha de ser mayor que el brazo de resistencia Br.
Cuando lo que se requiere es ampliar la velocidad transmitida a un objeto, o la distancia recorrida por éste, se ha de situar el fulcro más próximo a la potencia, de manera que Bp sea menor que Br.
Ejemplos de este tipo de palanca son el balancín, las tijeras, las tenazas, los alicates o la catapulta (para ampliar la velocidad). En el cuerpo humano se encuentran varios ejemplos de palancas de primer género, como el conjunto tríceps braquial - codo - antebrazo.

Palanca de segunda clase

Palanca de segunda clase.
En la palanca de segunda clase, la resistencia se encuentra entre la potencia y el fulcro. Se caracteriza en que la potencia es siempre menor que la resistencia, aunque a costa de disminuir la velocidad transmitida y la distancia recorrida por la resistencia.
Ejemplos de este tipo de palanca son la carretilla, los remos y el cascanueces.
El punto de apoyo de los remos se encuentra en el agua.

Palanca de tercera clase

Palanca de tercera clase.
En la palanca de tercera clase, la potencia se encuentra entre la resistencia y el fulcro. Se caracteriza en que la fuerza aplicada es mayor que la resultante; y se utiliza cuando lo que se requiere es ampliar la velocidad transmitida a un objeto o la distancia recorrida por él.
Ejemplos de este tipo de palanca son el quitagrapas y la pinza de cejas; y en el cuerpo humano, el conjunto codo - bíceps braquial - antebrazo, y la articulación temporomandibular

PALANCAS






CONCEPTO DE PALANCA:


La palanca es una máquina simple que se emplea en una gran variedad de aplicaciones. Probablemente, incluso, las palancas sean uno de los primeros mecanismos ingeniados para multiplicar fuerzas. Es cosa de imaginarse el colocar una gran roca como puerta a una caverna o al revés, sacar grandes rocas para habilitar una caverna. Con una buena palanca es posible mover los más grandes pesos y también aquellos que por ser tan pequeños también representan dificultad para tratarlos.

Básicamente está constituida por una barra rígida, un punto de apoyo o Fulcro y dos o más fuerzas presentes: una fuerza a la que hay que vencer, normalmente es un peso a sostener o a levantar o a mover, y la fuerza que se aplica para realizar la acción que se menciona. La distancia que hay entre el punto de apoyo y el lugar donde está aplicada cada fuerza, en la barra rígida, se denomina brazo. Así, a cada fuerza le corresponde un cierto brazo. Como en casi todos los casos de máquinas simples, con la palanca se trata de vencer una resistencia, situada en un extremo de la barra, aplicando una fuerza de valor más pequeño que se denomina potencia, en el otro extremo de la barra.

En una palanca podemos distinguir entonces los siguientes elementos:
-El punto de apoyo o fulcro.
-Potencia: la fuerza (en la figura de abajo: esfuerzo) que se ha de aplicar.
-Resistencia: el peso (en la figura de abajo: carga) que se ha de mover.






PRINCIPIO DE GALILEO GALILEI:


Se cuenta que el propio Galileo Galilei habría dicho: "Dadme un punto de apoyo y moveré el mundo". En realidad, obtenido ese punto de apoyo y usando una palanca suficientemente larga, eso es posible. En nuestro diario vivir son muchas las veces que “estamos haciendo palanca”. Desde mover un dedo o un brazo o un pie hasta tomar la cuchara para beber la sopa involucra el hacer palanca de una u otra forma. Ni hablar de cosas más evidentes como jugar al balancín, hacer funcionar una balanza, usar un cortaúñas, una tijera, un sacaclavos, etc. Casi siempre que se pregunta respecto a la utilidad de una palanca, la respuesta va por el lado de que “sirve para multiplicar una fuerza”, y eso es cierto pero prevalece el sentido que multiplicar es aumentar, y no es así siempre, a veces el multiplicar es disminuir al multiplicar por un número decimal por ejemplo.






TIPOS DE PALANCAS:

La ubicación del fulcro respecto a la carga y a la potencia o esfuerzo, definen el tipo de palanca:

-Palanca de primer tipo o primera clase: Se caracteriza por tener el fulcro entre la fuerza a vencer y la fuerza a aplicar. Esta palanca amplifica la fuerza que se aplica; es decir, consigue fuerzas más grandes a partir de otras más pequeñas. Algunos ejemplos de este tipo de palanca son: el alicates, la balanza, la tijera, las tenazas y el balancín. Algo que desde ya debe destacarse es que al accionar una palanca se producirá un movimiento rotatorio respecto al fulcro, que en ese caso sería el eje de rotación.


-Palanca de segundo tipo o segunda clase: Se caracteriza porque la fuerza a vencer se encuentra entre el fulcro y la fuerza a aplicar. Este tipo de palanca también es bastante común, se tiene en lo siguientes casos: carretilla, destapador de botellas, rompenueces. También se observa, como en el caso anterior, que el uso de esta palanca involucra un movimiento rotatorio respecto al fulcro que nuevamente pasa a llamarse eje de rotación.



-Palanca de tercer tipo o tercera clase: Se caracteriza por ejercerse la fuerza “a aplicar” entre el fulcro y la fuerza a vencer. Este tipo de palanca parece difícil de encontrar como ejemplo concreto, sin embargo el brazo humano es un buen ejemplo de este caso, y cualquier articulación es de este tipo, también otro ejemplo lo tenemos al levantar una cuchara con sopa o el tenedor con los tallarines, una corchetera funciona también aplicando una palanca de este tipo. Este tipo de palanca es ideal para situaciones de precisión, donde la fuerza aplicada suele ser mayor que la fuerza a vencer. Y, nuevamente, su uso involucra un movimiento rotatorio.



-Palancas múltiples: Varias palancas combinadas.Por ejemplo: el cortaúñas es una combinación de dos palancas, el mango es una combinación de 2º género que presiona las hojas de corte hasta unirlas. Las hojas de corte no son otra cosa que las bocas o extremos de una pinza y, constituyen, por tanto, una palanca de tercer género. Otro tipo de palancas múltiples se tiene en el caso de una máquina retroexcavadora, que tiene movimientos giratorios (un tipo de palanca), de ascenso y descenso (otra palanca) y de avanzar o retroceder (otra palanca).







APLICACION DE LAS PALANCAS AL BRAZO HIDRAULICO:

En la figura se puede apreciar que las palancas que vamos a utilizar en nuestro proyecto serán de tercer tipo o de tercer grado ya que en este tipo de palancas la fuerza aplicada debe ser mayor a la fuerza a levantar y en nuestro trabajo es de vital importancia poder levantar objetos. Además se utilizarán palancas múltiples ya que es brazo que construiremos constará de dos hasta cuatro palancas para poder lograr el cometido. Las palancas que utilizaremos serán hechas de un material resistente preferiblemente de madera y sostenidas en sus ejes por piezas metálicas, que permitirán obtener un movimiento circular en cada una de las palancas y un movimiento rotatorio en su eje para poder girar el brazo en distintas direcciones.



CIRCUITOS ELECTRICOS

Un circuito es una red eléctrica (interconexión de dos o más componentes, tales como resistencias, inductores, condensadores, fuentes, interruptores y semiconductores) que contiene al menos una trayectoria cerrada. Los circuitos que contienen solo fuentes, componentes lineales (resistores, condensadores, inductores), y elementos de distribución lineales (líneas de transmisión o cables) pueden analizarse por métodos algebraicos para determinar su comportamiento en corriente directa o en corriente alterna. Un circuito que tiene componentes electrónicos es denominado un circuito electrónico. Estas redes son generalmente no lineales y requieren diseños y herramientas de análisis mucho más complejos.
CLASIFICASION
Los circuitos eléctricos se clasifican de la siguiente forma:

   {\color{Blue}\mbox{Tipo de señal}}
   \quad
   \begin{cases}
      \mbox{Corriente contínua} \\
      \mbox{Corriente alterna}
   \end{cases}

   {\color{Blue}\mbox{Tipo de Régimen}}
   \quad
   \begin{cases}
      \mbox{Corriente periódica}   \\
      \mbox{Corriente transitoria} \\
      \mbox{Permanente}
   \end{cases}

   {\color{Blue}\mbox{Tipo de Componentes}}
   \quad
   \begin{cases}
      \mbox{Eléctricos} \\
      \mbox{Electrónicos} \quad
      {\begin{cases}
         \mbox{Digitales}\\
         \mbox{Analógicos} \\
         \mbox{Mixtos}
      \end{cases}}
   \end{cases}

   {\color{Blue}\mbox{Tipo de Configuración}}
   \quad
   \begin{cases}
      \mbox{Serie}    \\
      \mbox{Paralelo} \\
      \mbox{Mixto}
   \end{cases}
 


CIRCUITO ELÉCTRICO.
 El circuito eléctrico elemental.



Un circuito eléctrico es un conjunto de elementos que unidos de forma adecuada permiten el paso de electrones.
Está compuesto por:
  • GENERADOR o ACUMULADOR.
  • HILO CONDUCTOR.
  • RECEPTOR o CONSUMIDOR.
  • ELEMENTO DE MANIOBRA.
El sentido real de la corriente va del polo negativo al positivo. Sin embargo, en los primeros estudios se consideró al revés, por ello cuando resolvamos problemas siempre consideraremos que el sentido de la corriente eléctrica irá del polo positivo al negativo
Generador o acumulador.
Son aquellos elementos capaces de mantener una diferencia de potencial entre los extremos de un conductor.
Generadores primarios
: tienen un sólo uso: pilas.
Generadores secundarios
: pueden ser recargados: baterías o acumuladores.
Hilo Conductor
Formado por un MATERIAL CONDUCTOR, que es aquel que opone poca resistencia la paso de la corriente eléctrica.
Receptores
Son aquellos elementos capaces de aprovechar el paso de la corriente eléctrica: motores, resistencias, bombillas…
Elementos de maniobra.Son dispositivos que nos permiten abrir o cerrar el circuito cuando lo necesitamos.
Pulsador: Permite abrir o cerrar el circuito sólo mientras lo mantenemos pulsado
Interruptor: Permite abrir o cerrar un circuito y que este permanezca en la misma posición hasta que volvamos a actuar sobre él.
Conmutador: Permite abrir o cerrar un circuito desde distintos puntos del circuito. Un tipo especial es el conmutador de cruce que permite invertir la polaridad del circuito, lo usamos para invertir el giro de motores
Son dispositivos que protegen el circuito de sobrecargas de tensión y al operario de posibles accidentes.
Fusible
Formado por un hilo de cobre, colocado en serie en el circuito, que se funde si hay sobrecarga, abriendo el circuito. Impide que pueda quemarse algún componente.
AutomáticosAbren el circuito cuando la intensidad de corriente aumenta.
Magnéticos: si hay exceso de corriente en el circuito se produce la atracción de una bobina magnética y se abre el circuito Magnetotérmicos: si hay exceso de corriente se produce un calentamiento de una pastilla formada por dos metales con distinto coeficiente de dilatación, así uno dilata más que el otro. La pastilla se curva y el circuito se abre.
Diferenciales
Detectan variaciones mínimas de intensidad dentro del circuito debidas a derivaciones y abren el circuito.

ELEMENTOS DE PROTECCIÓN

DIBUJO TECNICO

Tipos de dibujo técnico
Con el desarrollo industrial y los avances tecnológicos el dibujo ha aumentado su campo de acción. Los principales son:
Dibujo arquitectónico
El dibujo arquitectónico abarca una gama de representaciones gráficas con las cuales realizamos los planos para la construcción de edificios, casas, quintas, autopistas, iglesias, fábricas y puentes entre otros. Se dibuja el proyecto con instrumentos precisos, con sus respectivos detalles, ajuste y correcciones, donde aparecen los planos de planta, fachadas, secciones, perspectivas, fundaciones, columnas, detalles y otros.
Dibujo mecánico
El dibujo mecánico se emplea en la representación de piezas o partes de máquinas, maquinarias, vehículos como grúas y motos, aviones, helicópteros y máquinas industriales. Los planos que representan un mecanismo simple o una máquina formada por un conjunto de piezas, son llamados planos de conjunto; y los que representa un sólo elemento, plano de pieza. Los que representan un conjunto de piezas con las indicaciones gráficas para su colocación, y armar un todo, son llamados planos de montaje.
DIBUJO ELECTRICO
Este tipo de dibujo se refiere a la representación gráfica de instalaciones eléctricas en una industria, oficina o vivienda o en cualquier estructura arquitectónica que requiera de electricidad. Mediante la simbología correspondiente se representan acometidas, caja de contador, tablero principal, línea de circuitos, interruptores, toma corrientes, salidas de lámparas entre otros.

 Dibujo electrónico

Se representa los circuitos que dan funcionamiento preciso a diversos aparatos que en la actualidad constituyen un adelanto tecnológico como las computadoras, amplificadores, transmisores, relojes, televisores, radios y otrosDibujo geológico
EL DIBUJO GELOGICO
se emplea en geografía y en geología, en él se representan las diversas capas de la tierra empleando una simbología y da a conocer los minerales contenidos en cada capa. Se usa mucho en minería y en exploraciones de yacimientos petrolíferos.
DIBUJO TOPOGRAFICO
El dibujo topográfico nos representa gráficamente las características de una determinada extensión de terreno, mediante signos convencionalmente establecidos. Nos muestra los accidentes naturales y artificiales, cotas o medidas, curvas horizontales o curvas de nivel.
DIBUJO URBANISTICO
Este tipo de dibujo se emplea en la organización de ciudades: en la ubicación de centros urbanos, zonas industriales, bulevares, calles, avenidas, jardines, autopistas, zonas recreativas entre otros. Se dibujan anteproyectos, proyectos, planos de conjunto y de pormenor.
EN ISTALASIONES SANITARIAS
Tiene por finalidad representar el posicionamiento de cada una de las piezas sanitarias: ducha, lavamanos, retrete, etc. Incluyendo la ubicación de las tuberías internas o externas

esclas

Escalas de Medida


ESCALA

13/02/08


Para el desarrollo de este tema se han tenido en cuenta las recomendaciones de la norma UNE-EN ISO 5455:1996.

CONCEPTO

La representación de objetos a su tamaño natural no es posible cuando éstos son muy grandes o cuando son muy pequeños. En el primer caso, porque requerirían formatos de dimensiones poco manejables y en el segundo, porque faltaría claridad en la definición de los mismos.

Esta problemática la resuelve la ESCALA, aplicando la ampliación o reducción necesarias en cada caso para que los objetos queden claramente representados en el plano del dibujo.

Se define la ESCALA como la relación entre la dimensión dibujada respecto de su dimensión real, esto es:

E = dibujo / realidad

Si el numerador de esta fracción es mayor que el denominador, se trata de una escala de ampliación, y será de reducción en caso contrario. La escala 1:1 corresponde a un objeto dibujado a su tamaño real (escala natural).


ESCALA GRÁFICA

Basado en el Teorema de Thales se utiliza un sencillo método gráfico para aplicar una escala.
Véase, por ejemplo, el caso para E 3:5

1º) Con origen en un punto O arbitrario se trazan dos rectas r y s formando un ángulo cualquiera.

2º) Sobre la recta r se sitúa el denominador de la escala (5 en este caso) y sobre la recta s el numerador (3 en este caso). Los extremos de dichos segmentos son A y B.

3º) Cualquier dimensión real situada sobre r será convertida en la del dibujo mediante una simple paralela a AB.

.

ESCALAS NORMALIZADAS

Aunque, en teoría, sea posible aplicar cualquier valor de escala, en la práctica se recomienda el uso de ciertos valores normalizados con objeto de facilitar la lectura de dimensiones mediante el uso de reglas o escalímetros.

Estos valores son:

Ampliación: 2:1, 5:1, 10:1, 20:1, 50:1 ...

Reducción: 1:2, 1:5, 1:10, 1:20, 1:50 ...

No obstante, en casos especiales (particularmente en construcción) se emplean ciertas escalas intermedias tales como:

1:25, 1:30, 1:40, etc...


EJEMPLOS PRÁCTICOS

EJEMPLO 1

Se desea representar en un formato A3 la planta de un edificio de 60 x 30 metros.

La escala más conveniente para este caso sería 1:200 que proporcionaría unas dimensiones de 40 x 20 cm, muy adecuadas al tamaño del formato.

EJEMPLO 2:

Se desea representar en un formato A4 una pieza de reloj de dimensiones 2 x 1 mm.

La escala adecuada sería 10:1
EJEMPLO 3:

Sobre una carta marina a E 1:50000 se mide una distancia de 7,5 cm entre dos islotes, ¿qué distancia real hay entre ambos?

Se resuelve con una sencilla regla de tres:

si 1 cm del dibujo son 50000 cm reales
7,5 cm del dibujo serán X cm reales

X = 7,5 x 50000 / 1 ... y esto da como resultado 375.000 cm, que equivalen a 3,75 km.


USO DEL ESCALÍMETRO

La forma más habitual del escalímetro es la de una regla de 30 cm de longitud, con sección estrellada de 6 facetas o caras. Cada una de estas facetas va graduada con escalas diferentes, que habitualmente son:

1:100, 1:200, 1:250, 1:300, 1:400, 1:500

Estas escalas son válidas igualmente para valores que resulten de multiplicarlas o dividirlas por 10, así por ejemplo, la escala 1:300 es utilizable en planos a escala 1:30 ó 1:3000, etc.

Ejemplos de utilización:
1º) Para un plano a E 1:250, se aplicará directamente la escala 1:250 del escalímetro y las indicaciones numéricas que en él se leen son los metros reales que representa el dibujo.

2º) En el caso de un plano a E 1:5000; se aplicará la escala 1:500 y habrá que multiplicar por 10 la lectura del escalímetro. Por ejemplo, si una dimensión del plano posee 27 unidades en el escalímetro, en realidad estamos midiendo 270 m.

Por supuesto, la escala 1:100 es también la escala 1:1, que se emplea normalmente como regla graduada en cm.